Symplectic homology of some Brieskorn manifolds

This paper consists of two parts. In the first part, we use symplectic homology to distinguish the contact structures on the Brieskorn manifolds Σ ( 2 ℓ , 2 , 2 , 2 ) , which contact homology cannot distinguish. This answers a question from Kwon and van Koert (Brieskorn manifolds in contact topology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2016-06, Vol.283 (1-2), p.243-274
1. Verfasser: Uebele, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper consists of two parts. In the first part, we use symplectic homology to distinguish the contact structures on the Brieskorn manifolds Σ ( 2 ℓ , 2 , 2 , 2 ) , which contact homology cannot distinguish. This answers a question from Kwon and van Koert (Brieskorn manifolds in contact topology, preprint, 2013 . arXiv:1310.0343 ). In the second part, we prove the existence of infinitely many exotic but homotopically trivial exotic contact structures on S 7 , distinguished by the mean Euler characteristic of S 1 -equivariant symplectic homology. Apart from various connected sum constructions, these contact structures can be taken from the Brieskorn manifolds Σ ( 78 k + 1 , 13 , 6 , 3 , 3 ) . We end with some considerations about extending this result to higher dimensions.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-015-1596-3