Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part II
Using the curvature-dimension inequality proved in Part I, we look at consequences of this inequality in terms of the interaction between the sub-Riemannian geometry and the heat semigroup P t corresponding to the sub-Laplacian. We give bounds for the gradient, entropy, a Poincaré inequality and a L...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2016-02, Vol.282 (1-2), p.131-164 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the curvature-dimension inequality proved in Part I, we look at consequences of this inequality in terms of the interaction between the sub-Riemannian geometry and the heat semigroup
P
t
corresponding to the sub-Laplacian. We give bounds for the gradient, entropy, a Poincaré inequality and a Li-Yau type inequality. These results require that the gradient of
P
t
f
remains uniformly bounded whenever the gradient of
f
is bounded and we give several sufficient conditions for this to hold. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-015-1535-3 |