Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part II

Using the curvature-dimension inequality proved in Part I, we look at consequences of this inequality in terms of the interaction between the sub-Riemannian geometry and the heat semigroup P t corresponding to the sub-Laplacian. We give bounds for the gradient, entropy, a Poincaré inequality and a L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2016-02, Vol.282 (1-2), p.131-164
Hauptverfasser: Grong, Erlend, Thalmaier, Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the curvature-dimension inequality proved in Part I, we look at consequences of this inequality in terms of the interaction between the sub-Riemannian geometry and the heat semigroup P t corresponding to the sub-Laplacian. We give bounds for the gradient, entropy, a Poincaré inequality and a Li-Yau type inequality. These results require that the gradient of P t f remains uniformly bounded whenever the gradient of f is bounded and we give several sufficient conditions for this to hold.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-015-1535-3