A uniqueness theorem for functions in the extended Selberg class
We study the uniqueness of functions in the extended Selberg class. It was shown in Ki (Adv Math 231, 2484–2490, 2012 ) that if for a nonzero complex number c the inverse images L 1 - 1 ( c ) and L 2 - 1 ( c ) of two functions satisfying the same functional equation in the extended Selberg class are...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2014-12, Vol.278 (3-4), p.995-1004 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the uniqueness of functions in the extended Selberg class. It was shown in Ki (Adv Math 231, 2484–2490,
2012
) that if for a nonzero complex number
c
the inverse images
L
1
-
1
(
c
)
and
L
2
-
1
(
c
)
of two functions satisfying the same functional equation in the extended Selberg class are the same, then
L
1
(
s
)
and
L
2
(
s
)
are identical. Here we prove that this holds even without the assumption that they satisfy the same functional equation. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-014-1343-1 |