A uniqueness theorem for functions in the extended Selberg class

We study the uniqueness of functions in the extended Selberg class. It was shown in Ki (Adv Math 231, 2484–2490, 2012 ) that if for a nonzero complex number c the inverse images L 1 - 1 ( c ) and L 2 - 1 ( c ) of two functions satisfying the same functional equation in the extended Selberg class are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2014-12, Vol.278 (3-4), p.995-1004
Hauptverfasser: Gonek, Steven M., Haan, Jaeho, Ki, Haseo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the uniqueness of functions in the extended Selberg class. It was shown in Ki (Adv Math 231, 2484–2490, 2012 ) that if for a nonzero complex number c the inverse images L 1 - 1 ( c ) and L 2 - 1 ( c ) of two functions satisfying the same functional equation in the extended Selberg class are the same, then L 1 ( s ) and L 2 ( s ) are identical. Here we prove that this holds even without the assumption that they satisfy the same functional equation.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-014-1343-1