Vector bundles and regulous maps
Let be a compact nonsingular affine real algebraic variety. We prove that every pre-algebraic vector bundle on becomes algebraic after finitely many blowing ups. Using this theorem, we then prove that the Stiefel-Whitney classes of any pre-algebraic -vector bundle on are algebraic. We also derive th...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2013-10, Vol.275 (1-2), p.403-418 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
be a compact nonsingular affine real algebraic variety. We prove that every pre-algebraic vector bundle on
becomes algebraic after finitely many blowing ups. Using this theorem, we then prove that the Stiefel-Whitney classes of any pre-algebraic
-vector bundle on
are algebraic. We also derive that the Chern classes of any pre-algebraic
-vector bundles and the Pontryagin classes of any pre-algebraic
-vector bundle are blow-
-algebraic. We also provide several results on line bundles on
. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-012-1141-6 |