On stochastic completeness of jump processes
We prove the following sufficient condition for stochastic completeness of symmetric jump processes on metric measure spaces: if the volume of the metric balls grows at most exponentially with radius and if the distance function is adapted in a certain sense to the jump kernel then the process is st...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2012-08, Vol.271 (3-4), p.1211-1239 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the following sufficient condition for stochastic completeness of symmetric jump processes on metric measure spaces: if the volume of the metric balls grows at most exponentially with radius and if the distance function is adapted in a certain sense to the jump kernel then the process is stochastically complete. We use this theorem to prove the following criterion for stochastic completeness of a continuous time random walk on a graph with a counting measure: if the volume growth with respect to the graph distance is at most cubic then the random walk is stochastically complete, where the cubic volume growth is sharp. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-011-0911-x |