On stochastic completeness of jump processes

We prove the following sufficient condition for stochastic completeness of symmetric jump processes on metric measure spaces: if the volume of the metric balls grows at most exponentially with radius and if the distance function is adapted in a certain sense to the jump kernel then the process is st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2012-08, Vol.271 (3-4), p.1211-1239
Hauptverfasser: Grigor’yan, Alexander, Huang, Xueping, Masamune, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the following sufficient condition for stochastic completeness of symmetric jump processes on metric measure spaces: if the volume of the metric balls grows at most exponentially with radius and if the distance function is adapted in a certain sense to the jump kernel then the process is stochastically complete. We use this theorem to prove the following criterion for stochastic completeness of a continuous time random walk on a graph with a counting measure: if the volume growth with respect to the graph distance is at most cubic then the random walk is stochastically complete, where the cubic volume growth is sharp.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-011-0911-x