Torus-invariant prime ideals in quantum matrices, totally nonnegative cells and symplectic leaves

The algebra of quantum matrices of a given size supports a rational torus action by automorphisms. It follows from work of Letzter and the first named author that to understand the prime and primitive spectra of this algebra, the first step is to understand the prime ideals that are invariant under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2011-10, Vol.269 (1-2), p.29-45
Hauptverfasser: Goodearl, K. R., Launois, S., Lenagan, T. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The algebra of quantum matrices of a given size supports a rational torus action by automorphisms. It follows from work of Letzter and the first named author that to understand the prime and primitive spectra of this algebra, the first step is to understand the prime ideals that are invariant under the torus action. In this paper, we prove that a family of quantum minors is the set of all quantum minors that belong to a given torus-invariant prime ideal of a quantum matrix algebra if and only if the corresponding family of minors defines a non-empty totally nonnegative cell in the space of totally nonnegative real matrices of the appropriate size. As a corollary, we obtain explicit generating sets of quantum minors for the torus-invariant prime ideals of quantum matrices in the case where the quantisation parameter q is transcendental over .
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-010-0714-5