On Segal–Bargmann analysis for finite Coxeter groups and its heat kernel

We prove identities involving the integral kernels of three versions (two being introduced here) of the Segal–Bargmann transform associated to a finite Coxeter group acting on a finite dimensional, real Euclidean space (the first version essentially having been introduced around the same time by Ben...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2011-10, Vol.269 (1-2), p.9-28
1. Verfasser: Sontz, Stephen Bruce
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove identities involving the integral kernels of three versions (two being introduced here) of the Segal–Bargmann transform associated to a finite Coxeter group acting on a finite dimensional, real Euclidean space (the first version essentially having been introduced around the same time by Ben Saïd and Ørsted and independently by Soltani) and the Dunkl heat kernel, due to Rösler, of the Dunkl Laplacian associated with the same Coxeter group. All but one of our relations are originally due to Hall in the context of standard Segal–Bargmann analysis on Euclidean space. Hall’s results (trivial Dunkl structure and arbitrary finite dimension) as well as our own results in  μ -deformed quantum mechanics (non-trivial Dunkl structure, dimension one) are particular cases of the results proved here. So we can understand all of these versions of the Segal–Bargmann transform associated to a Coxeter group as Hall type transforms. In particular, we define an analogue of Hall’s Version C generalized Segal–Bargmann transform which is then shown to be Dunkl convolution with the Dunkl heat kernel followed by analytic continuation. In the context of Version C we also introduce a new Segal–Bargmann space and a new transform associated to the Dunkl theory. Also we have what appears to be a new relation in this context between the Segal–Bargmann kernels for Versions A and C.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-010-0711-8