Fourier restriction and well-approximable numbers
We use a deterministic construction to prove the optimality of the exponent in the Mockenhaupt-Mitsis-Bak-Seeger Fourier restriction theorem for dimension $$d=1$$ d = 1 and parameter range $$0 < a,b \le d$$ 0 < a , b ≤ d and $$b\le 2a$$ b ≤ 2 a . Previous constructions by Hambrook and Łaba [15...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2024-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use a deterministic construction to prove the optimality of the exponent in the Mockenhaupt-Mitsis-Bak-Seeger Fourier restriction theorem for dimension $$d=1$$ d = 1 and parameter range $$0 < a,b \le d$$ 0 < a , b ≤ d and $$b\le 2a$$ b ≤ 2 a . Previous constructions by Hambrook and Łaba [15] and Chen [5] required randomness and only covered the range $$0 < b \le a \le d=1$$ 0 < b ≤ a ≤ d = 1 . We also resolve a question of Seeger [29] about the Fourier restriction inequality on the sets of well-approximable numbers. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-024-03000-w |