Hölder continuity and Harnack estimate for non-homogeneous parabolic equations
In this paper we continue the study on intrinsic Harnack inequality for non-homogeneous parabolic equations in non-divergence form initiated by the first author in Arya (Calc Var Partial Differ Equ 61:30–31, 2022). We establish a forward-in-time intrinsic Harnack inequality, which in particular impl...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2024-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we continue the study on intrinsic Harnack inequality for non-homogeneous parabolic equations in non-divergence form initiated by the first author in Arya (Calc Var Partial Differ Equ 61:30–31, 2022). We establish a forward-in-time intrinsic Harnack inequality, which in particular implies the Hölder continuity of the solutions. We also provide a Harnack type estimate on global scale which quantifies the strong minimum principle. In the time-independent setting, this together with Arya (2022) provides an alternative proof of the generalized Harnack inequality proven by the second author in Julin (Arch Ration Mech Anal 216:673–702, 2015). |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-024-02979-6 |