Analytic saddle spheres in $$\mathbb {S}^3$$ are equatorial

A theorem by Almgren establishes that any minimal 2-sphere immersed in $$\mathbb {S}^3$$ S 3 is a totally geodesic equator. In this paper we give a purely geometric extension of Almgren’s result, by showing that any immersed, real analytic 2-sphere in $$\mathbb {S}^3$$ S 3 that is saddle, i.e., of n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2024-08, Vol.389 (4), p.3865-3884
Hauptverfasser: Gálvez, José A., Mira, Pablo, Tassi, Marcos P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A theorem by Almgren establishes that any minimal 2-sphere immersed in $$\mathbb {S}^3$$ S 3 is a totally geodesic equator. In this paper we give a purely geometric extension of Almgren’s result, by showing that any immersed, real analytic 2-sphere in $$\mathbb {S}^3$$ S 3 that is saddle, i.e., of non-positive extrinsic curvature, must be an equator of $$\mathbb {S}^3$$ S 3 . We remark that, contrary to Almgren’s theorem, no geometric PDE is imposed on the surface. The result is not true for $$C^{\infty }$$ C ∞ spheres.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-023-02741-4