Analytic saddle spheres in $$\mathbb {S}^3$$ are equatorial
A theorem by Almgren establishes that any minimal 2-sphere immersed in $$\mathbb {S}^3$$ S 3 is a totally geodesic equator. In this paper we give a purely geometric extension of Almgren’s result, by showing that any immersed, real analytic 2-sphere in $$\mathbb {S}^3$$ S 3 that is saddle, i.e., of n...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2024-08, Vol.389 (4), p.3865-3884 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A theorem by Almgren establishes that any minimal 2-sphere immersed in $$\mathbb {S}^3$$ S 3 is a totally geodesic equator. In this paper we give a purely geometric extension of Almgren’s result, by showing that any immersed, real analytic 2-sphere in $$\mathbb {S}^3$$ S 3 that is saddle, i.e., of non-positive extrinsic curvature, must be an equator of $$\mathbb {S}^3$$ S 3 . We remark that, contrary to Almgren’s theorem, no geometric PDE is imposed on the surface. The result is not true for $$C^{\infty }$$ C ∞ spheres. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-023-02741-4 |