Exceptional characters and nonvanishing of Dirichlet L-functions
Let ψ be a real primitive character modulo D . If the L -function L ( s , ψ ) has a real zero close to s = 1 , known as a Landau–Siegel zero, then we say the character ψ is exceptional. Under the hypothesis that such exceptional characters exist, we prove that at least fifty percent of the central v...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2021-06, Vol.380 (1-2), p.593-642 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
ψ
be a real primitive character modulo
D
. If the
L
-function
L
(
s
,
ψ
)
has a real zero close to
s
=
1
, known as a Landau–Siegel zero, then we say the character
ψ
is exceptional. Under the hypothesis that such exceptional characters exist, we prove that at least fifty percent of the central values
L
(
1
/
2
,
χ
)
of the Dirichlet
L
-functions
L
(
s
,
χ
)
are nonzero, where
χ
ranges over primitive characters modulo
q
and
q
is a large prime of size
D
O
(
1
)
. Under the same hypothesis we also show that, for almost all
χ
, the function
L
(
s
,
χ
)
has at most a simple zero at
s
=
1
/
2
. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-020-02136-9 |