Exceptional characters and nonvanishing of Dirichlet L-functions

Let ψ be a real primitive character modulo D . If the L -function L ( s , ψ ) has a real zero close to s = 1 , known as a Landau–Siegel zero, then we say the character ψ is exceptional. Under the hypothesis that such exceptional characters exist, we prove that at least fifty percent of the central v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2021-06, Vol.380 (1-2), p.593-642
Hauptverfasser: Bui, Hung M., Pratt, Kyle, Zaharescu, Alexandru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ψ be a real primitive character modulo D . If the L -function L ( s , ψ ) has a real zero close to s = 1 , known as a Landau–Siegel zero, then we say the character ψ is exceptional. Under the hypothesis that such exceptional characters exist, we prove that at least fifty percent of the central values L ( 1 / 2 , χ ) of the Dirichlet L -functions L ( s , χ ) are nonzero, where χ ranges over primitive characters modulo q and q is a large prime of size D O ( 1 ) . Under the same hypothesis we also show that, for almost all χ , the function L ( s , χ ) has at most a simple zero at s = 1 / 2 .
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-020-02136-9