Weighted composition operators on the Dirichlet space: boundedness and spectral properties
Boundedness of weighted composition operators W u , φ acting on the classical Dirichlet space D as W u , φ f = u ( f ∘ φ ) is studied in terms of the multiplier space associated to the symbol φ , i.e., M ( φ ) = { u ∈ D : W u , φ is bounded on D } . A prominent role is played by the multipliers of t...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2015-12, Vol.363 (3-4), p.1265-1279 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Boundedness of weighted composition operators
W
u
,
φ
acting on the classical Dirichlet space
D
as
W
u
,
φ
f
=
u
(
f
∘
φ
)
is studied in terms of the
multiplier space
associated to the symbol
φ
, i.e.,
M
(
φ
)
=
{
u
∈
D
:
W
u
,
φ
is bounded on
D
}
. A prominent role is played by the multipliers of the Dirichlet space. As a consequence, the spectrum of
W
u
,
φ
in
D
whenever
φ
is an automorphism of the unit disc is studied, extending a recent work of Hyvärinen et al. (J. Funct. Anal. 265:1749–1777,
2013
) to the context of the Dirichlet space. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-015-1195-y |