Traces and embeddings of anisotropic function spaces
In this paper we characterize the trace spaces of a class of weighted function spaces of intersection type with mixed regularities. To a large extent we can overcome the difficulty of mixed scales by employing a microscopic improvement in Sobolev and mixed derivative embeddings with fixed integrabil...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2014-12, Vol.360 (3-4), p.571-606 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we characterize the trace spaces of a class of weighted function spaces of intersection type with mixed regularities. To a large extent we can overcome the difficulty of mixed scales by employing a microscopic improvement in Sobolev and mixed derivative embeddings with fixed integrability. We apply the general results to prove maximal
L
p
-
L
q
-regularity for the linearized, fully inhomogeneous two-phase Stefan problem with Gibbs–Thomson correction. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-014-1042-6 |