Traces and embeddings of anisotropic function spaces

In this paper we characterize the trace spaces of a class of weighted function spaces of intersection type with mixed regularities. To a large extent we can overcome the difficulty of mixed scales by employing a microscopic improvement in Sobolev and mixed derivative embeddings with fixed integrabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2014-12, Vol.360 (3-4), p.571-606
Hauptverfasser: Meyries, Martin, Veraar, Mark C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we characterize the trace spaces of a class of weighted function spaces of intersection type with mixed regularities. To a large extent we can overcome the difficulty of mixed scales by employing a microscopic improvement in Sobolev and mixed derivative embeddings with fixed integrability. We apply the general results to prove maximal L p - L q -regularity for the linearized, fully inhomogeneous two-phase Stefan problem with Gibbs–Thomson correction.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-014-1042-6