Hypersurfaces with too many rational curves

We study smooth hypersurfaces of degree d ≥ n + 1 in P n whose spaces of smooth rational curves of low degrees are larger than expected, and show that under certain conditions, the primitive part of the middle cohomology of such hypersurfaces have non-trivial Hodge substructures. As an application,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2014-12, Vol.360 (3-4), p.753-768
1. Verfasser: Beheshti, Roya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study smooth hypersurfaces of degree d ≥ n + 1 in P n whose spaces of smooth rational curves of low degrees are larger than expected, and show that under certain conditions, the primitive part of the middle cohomology of such hypersurfaces have non-trivial Hodge substructures. As an application, we prove that the space of lines on any smooth Fano hypersurface of degree d ≤ 8 in P n has the expected dimension 2 n - d - 3 .
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-014-1024-8