Badly approximable points on planar curves and a problem of Davenport
Let C be two times continuously differentiable curve in R 2 with at least one point at which the curvature is non-zero. For any i , j ⩾ 0 with i + j = 1 , let Bad ( i , j ) denote the set of points ( x , y ) ∈ R 2 for which max { ‖ q x ‖ 1 / i , ‖ q y ‖ 1 / j } > c / q for all q ∈ N . Here c = c...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2014, Vol.359 (3-4), p.969-1023 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
C
be two times continuously differentiable curve in
R
2
with at least one point at which the curvature is non-zero. For any
i
,
j
⩾
0
with
i
+
j
=
1
, let
Bad
(
i
,
j
)
denote the set of points
(
x
,
y
)
∈
R
2
for which
max
{
‖
q
x
‖
1
/
i
,
‖
q
y
‖
1
/
j
}
>
c
/
q
for all
q
∈
N
. Here
c
=
c
(
x
,
y
)
is a positive constant. Our main result implies that any finite intersection of such sets with
C
has full Hausdorff dimension. This provides a solution to a problem of Davenport dating back to the sixties. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-014-1020-z |