Badly approximable points on planar curves and a problem of Davenport

Let C be two times continuously differentiable curve in R 2 with at least one point at which the curvature is non-zero. For any i , j ⩾ 0 with i + j = 1 , let Bad ( i , j ) denote the set of points ( x , y ) ∈ R 2 for which max { ‖ q x ‖ 1 / i , ‖ q y ‖ 1 / j } > c / q for all q ∈ N . Here c = c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2014, Vol.359 (3-4), p.969-1023
Hauptverfasser: Badziahin, Dzmitry, Velani, Sanju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let C be two times continuously differentiable curve in R 2 with at least one point at which the curvature is non-zero. For any i , j ⩾ 0 with i + j = 1 , let Bad ( i , j ) denote the set of points ( x , y ) ∈ R 2 for which max { ‖ q x ‖ 1 / i , ‖ q y ‖ 1 / j } > c / q for all q ∈ N . Here c = c ( x , y ) is a positive constant. Our main result implies that any finite intersection of such sets with C has full Hausdorff dimension. This provides a solution to a problem of Davenport dating back to the sixties.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-014-1020-z