Webs and quantum skew Howe duality

We give a diagrammatic presentation in terms of generators and relations of the representation category of U q ( sl n ) . More precisely, we produce all the relations among SL n -webs, thus describing the full subcategory ⊗ -generated by fundamental representations ⋀ k C n (this subcategory can be i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2014-10, Vol.360 (1-2), p.351-390
Hauptverfasser: Cautis, Sabin, Kamnitzer, Joel, Morrison, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a diagrammatic presentation in terms of generators and relations of the representation category of U q ( sl n ) . More precisely, we produce all the relations among SL n -webs, thus describing the full subcategory ⊗ -generated by fundamental representations ⋀ k C n (this subcategory can be idempotent completed to recover the entire representation category). Our result answers a question posed by Kuperberg in Commun Math Phys 180(1):109–151, ( 1996 ) and affirms conjectures of Kim in Graphical calculus on representations of quantum lie algebras, Ph. D. thesis, University of California, Davis, ( 2003 ) and Morrison in A Diagrammatic Category for the Representation Theory of U q sl n . PhD thesis, University of California, Berkeley, ( 2007 ). Our main tool is an application of quantum skew Howe duality. This is the published version of arXiv:1210.6437 .
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-013-0984-4