A subelliptic analogue of Aronson–Serrin’s Harnack inequality
We study the Harnack inequality for weak solutions of a class of degenerate parabolic quasilinear PDE in cylinders where is an open subset of a manifold endowed with control metric corresponding to a system of Lipschitz continuous vector fields and a measure . We show that the Harnack inequality fol...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2013-11, Vol.357 (3), p.1175-1198 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Harnack inequality for weak solutions of a class of degenerate parabolic quasilinear PDE
in cylinders
where
is an open subset of a manifold
endowed with control metric
corresponding to a system of Lipschitz continuous vector fields
and a measure
. We show that the Harnack inequality follows from the basic hypothesis of doubling condition and a weak Poincaré inequality in the metric measure space
. We also show that such hypothesis hold for a class of Riemannian metrics
collapsing to a sub-Riemannian metric
uniformly in the parameter
. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-013-0937-y |