A subelliptic analogue of Aronson–Serrin’s Harnack inequality

We study the Harnack inequality for weak solutions of a class of degenerate parabolic quasilinear PDE in cylinders where is an open subset of a manifold endowed with control metric corresponding to a system of Lipschitz continuous vector fields and a measure . We show that the Harnack inequality fol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2013-11, Vol.357 (3), p.1175-1198
Hauptverfasser: Capogna, Luca, Citti, Giovanna, Rea, Garrett
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Harnack inequality for weak solutions of a class of degenerate parabolic quasilinear PDE in cylinders where is an open subset of a manifold endowed with control metric corresponding to a system of Lipschitz continuous vector fields and a measure . We show that the Harnack inequality follows from the basic hypothesis of doubling condition and a weak Poincaré inequality in the metric measure space . We also show that such hypothesis hold for a class of Riemannian metrics collapsing to a sub-Riemannian metric uniformly in the parameter .
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-013-0937-y