Pointwise convergence of vector-valued Fourier series

We prove a vector-valued version of Carleson’s theorem: let be a complex interpolation space between an unconditionality of martingale differences (UMD) space and a Hilbert space . For and , the partial sums of the Fourier series of converge to pointwise almost everywhere. Apparently, all known exam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2013-12, Vol.357 (4), p.1329-1361
Hauptverfasser: Hytönen, Tuomas P., Lacey, Michael T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a vector-valued version of Carleson’s theorem: let be a complex interpolation space between an unconditionality of martingale differences (UMD) space and a Hilbert space . For and , the partial sums of the Fourier series of converge to pointwise almost everywhere. Apparently, all known examples of UMD spaces are of this intermediate form . In particular, we answer affirmatively a question of Rubio de Francia on the pointwise convergence of Fourier series of Schatten class valued functions.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-013-0935-0