Pointwise convergence of vector-valued Fourier series
We prove a vector-valued version of Carleson’s theorem: let be a complex interpolation space between an unconditionality of martingale differences (UMD) space and a Hilbert space . For and , the partial sums of the Fourier series of converge to pointwise almost everywhere. Apparently, all known exam...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2013-12, Vol.357 (4), p.1329-1361 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a vector-valued version of Carleson’s theorem: let
be a complex interpolation space between an unconditionality of martingale differences (UMD) space
and a Hilbert space
. For
and
, the partial sums of the Fourier series of
converge to
pointwise almost everywhere. Apparently, all known examples of UMD spaces are of this intermediate form
. In particular, we answer affirmatively a question of Rubio de Francia on the pointwise convergence of Fourier series of Schatten class valued functions. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-013-0935-0 |