On Mordell–Weil groups of isotrivial abelian varieties over function fields
We show that the Mordell–Weil rank of an isotrivial abelian variety with cyclic holonomy depends only on the fundamental group of the complement to the discriminant, provided the discriminant has singularities in CM class introduced here. This class of singularities includes all unibranched plane cu...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2013-10, Vol.357 (2), p.605-629 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the Mordell–Weil rank of an isotrivial abelian variety with cyclic holonomy depends only on the fundamental group of the complement to the discriminant, provided the discriminant has singularities in CM class introduced here. This class of singularities includes all unibranched plane curves singularities. As a corollary, we describe a family of simple Jacobians over the field of rational functions in two variables for which the Mordell–Weil rank is arbitrarily large. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-013-0908-3 |