The norm of the Euler class
We prove that the norm of the Euler class for flat vector bundles is 2 − n (in even dimension n , since it vanishes in odd dimension). This shows that the Sullivan–Smillie bound considered by Gromov and Ivanov–Turaev is sharp. In the course of the proof, we construct a new cocycle representing and t...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2012-06, Vol.353 (2), p.523-544 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the norm of the Euler class
for flat vector bundles is 2
−
n
(in even dimension
n
, since it vanishes in odd dimension). This shows that the Sullivan–Smillie bound considered by Gromov and Ivanov–Turaev is sharp. In the course of the proof, we construct a new cocycle representing
and taking only the two values ±2
−
n
. Furthermore, we establish the uniqueness of a canonical bounded Euler class. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-011-0694-8 |