On Oliver’s p-group conjecture: II
Let p be an odd prime and S a finite p -group. B. Oliver’s conjecture arises from an open problem in the theory of p -local finite groups. It is the claim that a certain characteristic subgroup of S always contains the Thompson subgroup. In previous work the first two authors and M. Lilienthal recas...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2010-05, Vol.347 (1), p.111-122 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
p
be an odd prime and
S
a finite
p
-group. B. Oliver’s conjecture arises from an open problem in the theory of
p
-local finite groups. It is the claim that a certain characteristic subgroup
of
S
always contains the Thompson subgroup. In previous work the first two authors and M. Lilienthal recast Oliver’s conjecture as a statement about the representation theory of the factor group
. We now verify the conjecture for a wide variety of groups
. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-009-0435-4 |