On Oliver’s p-group conjecture: II

Let p be an odd prime and S a finite p -group. B. Oliver’s conjecture arises from an open problem in the theory of p -local finite groups. It is the claim that a certain characteristic subgroup of S always contains the Thompson subgroup. In previous work the first two authors and M. Lilienthal recas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2010-05, Vol.347 (1), p.111-122
Hauptverfasser: Green, David J., Héthelyi, László, Mazza, Nadia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let p be an odd prime and S a finite p -group. B. Oliver’s conjecture arises from an open problem in the theory of p -local finite groups. It is the claim that a certain characteristic subgroup of S always contains the Thompson subgroup. In previous work the first two authors and M. Lilienthal recast Oliver’s conjecture as a statement about the representation theory of the factor group . We now verify the conjecture for a wide variety of groups .
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-009-0435-4