Operators with an absolute functional calculus
We study sectorial operators with a special type of functional calculus, which we term an absolute functional calculus. A typical example of such an operator is an invertible operator A (defined on a Banach space X ) considered on the real interpolation space (Dom( A ), X ) θ , p where 0 < θ <...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2010-02, Vol.346 (2), p.259-306 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study sectorial operators with a special type of functional calculus, which we term an absolute functional calculus. A typical example of such an operator is an invertible operator
A
(defined on a Banach space
X
) considered on the real interpolation space (Dom(
A
),
X
)
θ
,
p
where 0 <
θ
< 1 and 1 <
p
< ∞. In general the absolute functional calculus can be characterized in terms of real interpolation spaces. We show that operators of this type have a strong form of the
H
∞
-calculus and behave very well with respect to the joint functional calculus. We give applications of these results to recent work of Arendt, Batty and Bu on the existence of Hölder-continuous solutions for the abstract Cauchy problem. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-009-0399-4 |