Covering spheres of Banach spaces by balls
If the unit sphere of a Banach space X can be covered by countably many balls no one of which contains the origin, then, as an easy consequence of the separation theorem, X * is w *-separable. We prove the converse under suitable renorming. Moreover, the balls of the countable covering can be chosen...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2009-08, Vol.344 (4), p.939-945 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If the unit sphere of a Banach space
X
can be covered by countably many balls no one of which contains the origin, then, as an easy consequence of the separation theorem,
X
* is
w
*-separable. We prove the converse under suitable renorming. Moreover, the balls of the countable covering can be chosen as translates of the same ball. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-009-0336-6 |