Covering spheres of Banach spaces by balls

If the unit sphere of a Banach space X can be covered by countably many balls no one of which contains the origin, then, as an easy consequence of the separation theorem, X * is w *-separable. We prove the converse under suitable renorming. Moreover, the balls of the countable covering can be chosen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2009-08, Vol.344 (4), p.939-945
Hauptverfasser: Fonf, Vladimir P., Zanco, Clemente
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If the unit sphere of a Banach space X can be covered by countably many balls no one of which contains the origin, then, as an easy consequence of the separation theorem, X * is w *-separable. We prove the converse under suitable renorming. Moreover, the balls of the countable covering can be chosen as translates of the same ball.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-009-0336-6