Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian

The asymptotic behavior of viscosity solutions to the Cauchy–Dirichlet problem for the degenerate parabolic equation u t  = Δ ∞ u in Ω × (0,∞), where Δ ∞ stands for the so-called infinity-Laplacian, is studied in three cases: (i) and the initial data has a compact support; (ii) Ω is bounded and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2009-04, Vol.343 (4), p.921-953
Hauptverfasser: Akagi, Goro, Juutinen, Petri, Kajikiya, Ryuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The asymptotic behavior of viscosity solutions to the Cauchy–Dirichlet problem for the degenerate parabolic equation u t  = Δ ∞ u in Ω × (0,∞), where Δ ∞ stands for the so-called infinity-Laplacian, is studied in three cases: (i) and the initial data has a compact support; (ii) Ω is bounded and the boundary condition is zero; (iii) Ω is bounded and the boundary condition is non-zero. Our method of proof is based on the comparison principle and barrier function arguments. Explicit representations of separable type and self-similar type of solutions are also established. Moreover, in case (iii), we propose another type of barrier function deeply related to a solution of .
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-008-0297-1