Sublayer of Prandtl Boundary Layers

The aim of this paper is to investigate the stability of Prandtl boundary layers in the vanishing viscosity limit ν → 0 . In Grenier (Commun Pure Appl Math 53(9):1067–1091, 2000 ), one of the authors proved that there exists no asymptotic expansion involving one of Prandtl’s boundary layer, with thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2018-09, Vol.229 (3), p.1139-1151
Hauptverfasser: Grenier, Emmanuel, Nguyen, Toan T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to investigate the stability of Prandtl boundary layers in the vanishing viscosity limit ν → 0 . In Grenier (Commun Pure Appl Math 53(9):1067–1091, 2000 ), one of the authors proved that there exists no asymptotic expansion involving one of Prandtl’s boundary layer, with thickness of order ν , which describes the inviscid limit of Navier–Stokes equations. The instability gives rise to a viscous boundary sublayer whose thickness is of order ν 3 / 4 . In this paper, we point out how the stability of the classical Prandtl’s layer is linked to the stability of this sublayer. In particular, we prove that the two layers cannot both be nonlinearly stable in L ∞ . That is, either the Prandtl’s layer or the boundary sublayer is nonlinearly unstable in the sup norm.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-018-1235-3