A degree bound for the c-boomerang uniformity of permutation monomials

Let $$\mathbb{F}_q$$ F q be a finite field of characteristic p . In this paper we prove that the c -Boomerang Uniformity, $$c \ne 0$$ c ≠ 0 , for all permutation monomials $$x^d$$ x d , where $$d > 1$$ d > 1 and $$p \not \mid d$$ p ∤ d , is bounded by $$\left\{ \begin{array}{ll} d^2, & c^2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable algebra in engineering, communication and computing communication and computing, 2024-10
1. Verfasser: Steiner, Matthias Johann
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $$\mathbb{F}_q$$ F q be a finite field of characteristic p . In this paper we prove that the c -Boomerang Uniformity, $$c \ne 0$$ c ≠ 0 , for all permutation monomials $$x^d$$ x d , where $$d > 1$$ d > 1 and $$p \not \mid d$$ p ∤ d , is bounded by $$\left\{ \begin{array}{ll} d^2, & c^2 \ne 1, \\ d \cdot (d - 1), & c = - 1, \\ d \cdot (d - 2), & c = 1 \end{array} \right\} .$$ d 2 , c 2 ≠ 1 , d · ( d - 1 ) , c = - 1 , d · ( d - 2 ) , c = 1 . Further, we utilize this bound to estimate the c -boomerang uniformity of a large class of generalized triangular dynamical systems, a polynomial-based approach to describe cryptographic permutations of $$\mathbb{F}_{q}^{n}$$ F q n , including the well-known substitution–permutation network.
ISSN:0938-1279
1432-0622
DOI:10.1007/s00200-024-00670-6