Fractional imputation for incomplete two-way contingency tables
Imputation procedures such as fully efficient fractional imputation (FEFI) or multiple imputation (MI) create multiple versions of the missing observations, thereby reflecting uncertainty about their true values. Multiple imputation generates a finite set of imputations through a posterior predictiv...
Gespeichert in:
Veröffentlicht in: | Metrika 2012-07, Vol.75 (5), p.581-599 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Imputation procedures such as fully efficient fractional imputation (FEFI) or multiple imputation (MI) create multiple versions of the missing observations, thereby reflecting uncertainty about their true values. Multiple imputation generates a finite set of imputations through a posterior predictive distribution. Fractional imputation assigns weights to the observed data. The focus of this article is the development of FEFI for partially classified two-way contingency tables. Point estimators and variances of FEFI estimators of population proportions are derived. Simulation results, when data are missing completely at random or missing at random, show that FEFI is comparable in performance to maximum likelihood estimation and multiple imputation and superior to simple stochastic imputation and complete case anlaysis. Methods are illustrated with four data sets. |
---|---|
ISSN: | 0026-1335 1435-926X |
DOI: | 10.1007/s00184-011-0343-y |