Simultaneous optimal estimation in linear mixed models

Simultaneous optimal estimation in linear mixed models is considered. A necessary and sufficient condition is presented for the least squares estimator of the fixed effects and the analysis of variance estimator of the variance components to be of uniformly minimum variance simultaneously in a gener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metrika 2012-05, Vol.75 (4), p.471-489
Hauptverfasser: Wu, Mi-Xia, Yu, Kai-Fun, Liu, Aiyi, Ma, Tie-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Simultaneous optimal estimation in linear mixed models is considered. A necessary and sufficient condition is presented for the least squares estimator of the fixed effects and the analysis of variance estimator of the variance components to be of uniformly minimum variance simultaneously in a general variance components model. That is, the matrix obtained by orthogonally projecting the covariance matrix onto the orthogonal complement space of the column space of the design matrix is symmetric, each eigenvalue of the matrix is a linear combinations of the variance components and the number of all distinct eigenvalues of the matrix is equal to the the number of the variance components. Under this condition, uniformly optimal unbiased tests and uniformly most accurate unbiased confidence intervals are constructed for the parameters of interest. A necessary and sufficient condition is also given for the equivalence of several common estimators of variance components. Two examples of their application are given.
ISSN:0026-1335
1435-926X
DOI:10.1007/s00184-010-0337-1