Investigating design for survival models
The aim of this paper is to derive methodology for designing ‘time to event’ type experiments. In comparison to estimation, design aspects of ‘time to event’ experiments have received relatively little attention. We show that gains in efficiency of estimators of parameters and use of experimental ma...
Gespeichert in:
Veröffentlicht in: | Metrika 2010, Vol.72 (3), p.295-311 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to derive methodology for designing ‘time to event’ type experiments. In comparison to estimation, design aspects of ‘time to event’ experiments have received relatively little attention. We show that gains in efficiency of estimators of parameters and use of experimental material can be made using optimal design theory. The types of models considered include classical failure data and accelerated testing situations, and frailty models, each involving covariates which influence the outcome. The objective is to construct an optimal design based of the values of the covariates and associated model or indeed a candidate set of models. We consider
D
-optimality and create compound optimality criteria to derive optimal designs for multi-objective situations which, for example, focus on the number of failures as well as the estimation of parameters. The approach is motivated and demonstrated using common failure/survival models, for example, the Weibull distribution, product assessment and frailty models. |
---|---|
ISSN: | 0026-1335 1435-926X |
DOI: | 10.1007/s00184-009-0254-3 |