Experimental investigations on solid and metal-cored creep-resistant wires deposited under GMA and PTA-based wire arc additive manufacturing (WAAM)

Wire arc additive manufacturing (WAAM), also known as Arc-DED, possesses great potential for efficient production using various materials and wire types. This study utilized gas metal arc (GMA) and plasma transferred arc (PTA) variants of WAAM to deposit 2.25Cr-1Mo steel employing a metal-cored wire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2025, Vol.136 (3), p.1207-1229
Hauptverfasser: Iqbal, Hambal, Pardal, Goncalo, Suder, Wojciech, Ascari, Alessandro, Fortunato, Alessandro, Liverani, Erica, Williams, Stewart, Neto, Leonor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wire arc additive manufacturing (WAAM), also known as Arc-DED, possesses great potential for efficient production using various materials and wire types. This study utilized gas metal arc (GMA) and plasma transferred arc (PTA) variants of WAAM to deposit 2.25Cr-1Mo steel employing a metal-cored wire (MCW) and a solid wire counterpart having the same chemical composition for the comparative study. Initially, bead-on-plate trials were conducted with both WAAM processes and different shielding gas combinations in GMA-WAAM using the cored wire. The heat input versus deposition ratio was analysed to assess the heat input and the effects of shielding gases in GMA-WAAM. Arc behaviour was monitored with a process camera, and bead morphologies and dilutions were compared. Furthermore, test walls were deposited under the two WAAM processes and the shielding gas conditions, employing the cored and solid wire. Detailed microstructural study was conducted through optical microscopy, and hardness tests were performed to determine the mechanical properties. Energy dispersive X-ray spectroscopy (EDS) was used to examine the elemental composition and potential segregation in walls deposited with cored and solid wires. Results indicated a lower heat input when using cored wire and variable heat input due to shielding gases. A bainitic/martensitic microstructure was observed in test walls deposited with cored and solid wires with comparable microstructural features. The PTA process produced higher hardness than GMA, and solid wire exhibited slightly higher hardness than cored wire. Selection of shielding gas also influenced the hardness. Finally, the EDS maps and elemental study revealed comparable results for both wires. The results show good performance and outcome for cored wire.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-024-14926-5