Numerical prediction of Joule heating effect in electric hot incremental sheet forming

Since the deformation region involves the interaction of electric-thermal-force coupling in electric hot incremental sheet forming, the numerical simulation of the forming process is unusually difficult. Currently, the thermal-force coupling method is adopted to simulate approximately the whole form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2022-08, Vol.121 (11-12), p.8221-8230
Hauptverfasser: Li, Zhengfang, He, Songlin, Zhang, Yuhang, An, Zhiguo, Gao, Zhengyuan, Lu, Shihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since the deformation region involves the interaction of electric-thermal-force coupling in electric hot incremental sheet forming, the numerical simulation of the forming process is unusually difficult. Currently, the thermal-force coupling method is adopted to simulate approximately the whole forming process, and the Joule heating effect is often ignored. Therefore, the numerical simulation of the Joule heating effect is especially significant for the prediction accuracy of forming process. In this paper, a novel numerical simulation method considering electric-thermal-force parameters was proposed to update the thermal-force condition of the forming region instantly. Meanwhile, the model of contact thermal conductance was established, combining geometrical and electric-thermal parameters. Then a high-precision finite element model was obtained to predict the Joule heating effect of the forming region. In addition to this, the impact of thermal superposition on forming temperature was further analyzed, and a modified model of contact thermal conductance was established in electric hot incremental sheet forming.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-022-09888-5