Process simulation and experimental investigation on joining of Al/Ti sheets by magnetic pulse welding

The Al/Ti composite structure combines the performance advantages of these two materials and is widely used in aerospace. However, the physical and chemical properties of aluminum are quite different from those of titanium, resulting in poor joint quality when using conventional welding methods. Mag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2022-08, Vol.121 (7-8), p.5463-5472
Hauptverfasser: Chen, Yingzi, Zhang, Huaiqing, Wu, Hao, Peng, Wenxiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Al/Ti composite structure combines the performance advantages of these two materials and is widely used in aerospace. However, the physical and chemical properties of aluminum are quite different from those of titanium, resulting in poor joint quality when using conventional welding methods. Magnetic pulse welding (MPW), as an advanced solid-state welding, achieves metallurgical bonding by driving workpieces to collide at high speed with contactless force and is suitable for welding dissimilar materials or materials with poor weldability. So, the novelty of this paper is to apply magnetic pulse welding technology to join AA1060/TC4 sheets, and the purpose is to try to solve the problem of unsatisfactory welding effect of aluminum and titanium materials. In addition, an improved three-dimensional finite element model was developed to explore the electromagnetic mechanism and dynamic characteristics, which previous research has not systematically investigated. Meanwhile, the influence of process parameters on the welding effect of Al/Ti sheets was experimentally investigated and the quality of the joints was assessed by tensile test and microscopic observation. Ultimately, the experimental results show that the 1060 aluminum and TC4 titanium sheets can be effectively joined when the discharge energy reaches 10.08 kJ. Besides, the joint welded at 2 mm standoff distance has the maximum tensile strength of 1856.25 N and forms a defect-free wavy interface. It is demonstrated that MPW enables good welding of 1060 aluminum and TC4 titanium sheets, which lays a foundation for subsequent research.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-022-09402-x