Almost Everywhere Convergent Fourier Series
We study some properties of the logconvex quasi-Banach space QA defined by Arias-de-Reyna and show several applications to convergence of Fourier series. In particular, we describe the Banach envelope of QA and prove that there exists a Lorentz space strictly bigger than the Antonov space in which t...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2012-04, Vol.18 (2), p.266-286 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study some properties of the logconvex quasi-Banach space
QA
defined by Arias-de-Reyna and show several applications to convergence of Fourier series. In particular, we describe the Banach envelope of
QA
and prove that there exists a Lorentz space strictly bigger than the Antonov space in which the almost everywhere convergence of the Fourier series holds. We also give a necessary condition for a Banach rearrangement invariant space
X
to be contained in
QA
. As an application, we show that for some classes of Banach spaces there is no the largest Banach space in a given class which is contained in
QA
. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-011-9199-9 |