Almost Everywhere Convergent Fourier Series

We study some properties of the logconvex quasi-Banach space QA defined by Arias-de-Reyna and show several applications to convergence of Fourier series. In particular, we describe the Banach envelope of QA and prove that there exists a Lorentz space strictly bigger than the Antonov space in which t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2012-04, Vol.18 (2), p.266-286
Hauptverfasser: Carro, M. J., Mastyło, M., Rodríguez-Piazza, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study some properties of the logconvex quasi-Banach space QA defined by Arias-de-Reyna and show several applications to convergence of Fourier series. In particular, we describe the Banach envelope of QA and prove that there exists a Lorentz space strictly bigger than the Antonov space in which the almost everywhere convergence of the Fourier series holds. We also give a necessary condition for a Banach rearrangement invariant space X to be contained in QA . As an application, we show that for some classes of Banach spaces there is no the largest Banach space in a given class which is contained in  QA .
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-011-9199-9