Apollonian structure in the Abelian sandpile

The Abelian sandpile process evolves configurations of chips on the integer lattice by toppling any vertex with at least 4 chips, distributing one of its chips to each of its 4 neighbors. When begun from a large stack of chips, the terminal state of the sandpile has a curious fractal structure which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2016-02, Vol.26 (1), p.306-336
Hauptverfasser: Levine, Lionel, Pegden, Wesley, Smart, Charles K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Abelian sandpile process evolves configurations of chips on the integer lattice by toppling any vertex with at least 4 chips, distributing one of its chips to each of its 4 neighbors. When begun from a large stack of chips, the terminal state of the sandpile has a curious fractal structure which has remained unexplained. Using a characterization of the quadratic growths attainable by integer-superharmonic functions, we prove that the sandpile PDE recently shown to characterize the scaling limit of the sandpile admits certain fractal solutions, giving a precise mathematical perspective on the fractal nature of the sandpile.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-016-0358-7