On the differentiability of Lipschitz functions with respect to measures in the Euclidean space

For every finite measure μ on R n we define a decomposability bundle V ( μ , · ) related to the decompositions of μ in terms of rectifiable one-dimensional measures. We then show that every Lipschitz function on R n is differentiable at μ -a.e. x with respect to the subspace V ( μ , x ) , and prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2016-02, Vol.26 (1), p.1-66
Hauptverfasser: Alberti, Giovanni, Marchese, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For every finite measure μ on R n we define a decomposability bundle V ( μ , · ) related to the decompositions of μ in terms of rectifiable one-dimensional measures. We then show that every Lipschitz function on R n is differentiable at μ -a.e. x with respect to the subspace V ( μ , x ) , and prove that this differentiability result is optimal, in the sense that, following (Alberti et al., Structure of null sets, differentiability of Lipschitz functions, and other problems, 2016 ), we can construct Lipschitz functions which are not differentiable at μ -a.e. x in any direction which is not in V ( μ , x ) . As a consequence we obtain a differentiability result for Lipschitz functions with respect to (measures associated to) k -dimensional normal currents, which we use to extend certain basic formulas involving normal currents and maps of class C 1 to Lipschitz maps.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-016-0354-y