Quantum Ergodic Restriction Theorems: Manifolds Without Boundary

We prove that if ( M , g ) is a compact Riemannian manifold with ergodic geodesic flow, and if is a smooth hypersurface satisfying a generic microlocal asymmetry condition, then restrictions of an orthonormal basis of Δ-eigenfunctions of ( M , g ) to H are quantum ergodic on H . The condition on H i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2013-04, Vol.23 (2), p.715-775
Hauptverfasser: Toth, John A., Zelditch, Steve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that if ( M , g ) is a compact Riemannian manifold with ergodic geodesic flow, and if is a smooth hypersurface satisfying a generic microlocal asymmetry condition, then restrictions of an orthonormal basis of Δ-eigenfunctions of ( M , g ) to H are quantum ergodic on H . The condition on H is satisfied by geodesic circles, closed horocycles and generic closed geodesics on a hyperbolic surface. A key step in the proof is that matrix elements of Fourier integral operators F whose canonical relation almost nowhere commutes with the geodesic flow must tend to zero.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-013-0220-0