Quantum Ergodic Restriction Theorems: Manifolds Without Boundary
We prove that if ( M , g ) is a compact Riemannian manifold with ergodic geodesic flow, and if is a smooth hypersurface satisfying a generic microlocal asymmetry condition, then restrictions of an orthonormal basis of Δ-eigenfunctions of ( M , g ) to H are quantum ergodic on H . The condition on H i...
Gespeichert in:
Veröffentlicht in: | Geometric and functional analysis 2013-04, Vol.23 (2), p.715-775 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that if (
M
,
g
) is a compact Riemannian manifold with ergodic geodesic flow, and if
is a smooth hypersurface satisfying a generic microlocal asymmetry condition, then restrictions
of an orthonormal basis
of Δ-eigenfunctions of (
M
,
g
) to
H
are quantum ergodic on
H
. The condition on
H
is satisfied by geodesic circles, closed horocycles and generic closed geodesics on a hyperbolic surface. A key step in the proof is that matrix elements
of Fourier integral operators
F
whose canonical relation almost nowhere commutes with the geodesic flow must tend to zero. |
---|---|
ISSN: | 1016-443X 1420-8970 |
DOI: | 10.1007/s00039-013-0220-0 |