Growth of Groups and Diffeomorphisms of the Interval

. We prove that, for all α  > 0, every finitely generated group of C 1+ α diffeomorphisms of the interval with sub-exponential growth is almost nilpotent. Consequently, there is no group of C 1+ α interval diffeomorphisms having intermediate growth. In addition, we show that the C 1+ α regularity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2008-09, Vol.18 (3), p.988-1028
1. Verfasser: Navas, Andrés
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:. We prove that, for all α  > 0, every finitely generated group of C 1+ α diffeomorphisms of the interval with sub-exponential growth is almost nilpotent. Consequently, there is no group of C 1+ α interval diffeomorphisms having intermediate growth. In addition, we show that the C 1+ α regularity hypothesis for this assertion is essential by giving a C 1 counter-example.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-008-0667-6