Hadamard tensors and lower bounds on multiparty communication complexity

We develop a new method for estimating the discrepancy of tensors associated with multiparty communication problems in the “Number on the Forehead” model of Chandra, Furst, and Lipton. We define an analog of the Hadamard property of matrices for tensors in multiple dimensions and show that any k -pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational complexity 2013-09, Vol.22 (3), p.595-622
Hauptverfasser: Ford, Jeff, Gál, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a new method for estimating the discrepancy of tensors associated with multiparty communication problems in the “Number on the Forehead” model of Chandra, Furst, and Lipton. We define an analog of the Hadamard property of matrices for tensors in multiple dimensions and show that any k -party communication problem represented by a Hadamard tensor must have Ω( n /2 k ) multiparty communication complexity. We also exhibit constructions of Hadamard tensors. This allows us to obtain Ω( n /2 k ) lower bounds on multiparty communication complexity for a new class of explicitly defined Boolean functions.
ISSN:1016-3328
1420-8954
DOI:10.1007/s00037-012-0052-6