Hadamard tensors and lower bounds on multiparty communication complexity
We develop a new method for estimating the discrepancy of tensors associated with multiparty communication problems in the “Number on the Forehead” model of Chandra, Furst, and Lipton. We define an analog of the Hadamard property of matrices for tensors in multiple dimensions and show that any k -pa...
Gespeichert in:
Veröffentlicht in: | Computational complexity 2013-09, Vol.22 (3), p.595-622 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a new method for estimating the discrepancy of tensors associated with multiparty communication problems in the “Number on the Forehead” model of Chandra, Furst, and Lipton. We define an analog of the Hadamard property of matrices for tensors in multiple dimensions and show that any
k
-party communication problem represented by a Hadamard tensor must have Ω(
n
/2
k
) multiparty communication complexity. We also exhibit constructions of Hadamard tensors. This allows us to obtain Ω(
n
/2
k
) lower bounds on multiparty communication complexity for a new class of explicitly defined Boolean functions. |
---|---|
ISSN: | 1016-3328 1420-8954 |
DOI: | 10.1007/s00037-012-0052-6 |