A sharp upper bound for the first Dirichlet eigenvalue of a class of wedge-like domains
By introducing new geometric factors which lend themselves to the Payne interpretation in Weinstein fractional space, we prove new isoperimetric inequalities which complement those of Payne–Weinberger and Saint-Venant giving a new upper bound for the fundamental mode of vibration of a wedge-like mem...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2015-10, Vol.66 (5), p.2419-2440 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By introducing new geometric factors which lend themselves to the Payne interpretation in Weinstein fractional space, we prove new isoperimetric inequalities which complement those of Payne–Weinberger and Saint-Venant giving a new upper bound for the fundamental mode of vibration of a wedge-like membrane and a new lower bound for its “relative torsional rigidity”. We also prove a new weighted version of a result of Crooke–Sperb for the associated fundamental eigenfunction of the Dirichlet Laplacian for such domains. A new weighted Rellich-type identity for wedge-like domains is also proved to achieve this latter task. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-015-0530-1 |