A sharp upper bound for the first Dirichlet eigenvalue of a class of wedge-like domains

By introducing new geometric factors which lend themselves to the Payne interpretation in Weinstein fractional space, we prove new isoperimetric inequalities which complement those of Payne–Weinberger and Saint-Venant giving a new upper bound for the fundamental mode of vibration of a wedge-like mem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2015-10, Vol.66 (5), p.2419-2440
Hauptverfasser: Hasnaoui, Abdelhalim, Hermi, Lotfi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By introducing new geometric factors which lend themselves to the Payne interpretation in Weinstein fractional space, we prove new isoperimetric inequalities which complement those of Payne–Weinberger and Saint-Venant giving a new upper bound for the fundamental mode of vibration of a wedge-like membrane and a new lower bound for its “relative torsional rigidity”. We also prove a new weighted version of a result of Crooke–Sperb for the associated fundamental eigenfunction of the Dirichlet Laplacian for such domains. A new weighted Rellich-type identity for wedge-like domains is also proved to achieve this latter task.
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-015-0530-1