Bifurcations for a coupled Schrödinger system with multiple components
In this paper, we study local bifurcations of an indefinite elliptic system with multiple components: - Δ u j + a u j = μ j u j 3 + β ∑ k ≠ j u k 2 u j , u j > 0 in Ω , u j = 0 on ∂ Ω , j = 1 , . . . , n . Here Ω ⊂ R N is a smooth and bounded domain, n ≥ 3 , a < - Λ 1 where Λ 1 is the principa...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2015-10, Vol.66 (5), p.2109-2123 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study local bifurcations of an indefinite elliptic system with multiple components:
-
Δ
u
j
+
a
u
j
=
μ
j
u
j
3
+
β
∑
k
≠
j
u
k
2
u
j
,
u
j
>
0
in
Ω
,
u
j
=
0
on
∂
Ω
,
j
=
1
,
.
.
.
,
n
.
Here
Ω
⊂
R
N
is a smooth and bounded domain,
n
≥
3
,
a
<
-
Λ
1
where
Λ
1
is the principal eigenvalue of
(
-
Δ
,
H
0
1
(
Ω
)
)
;
μ
j
and
β
are real constants. Using the positive and nondegenerate solution of the scalar equation
-
Δ
ω
-
ω
=
-
ω
3
,
ω
∈
H
0
1
(
Ω
)
, we construct a synchronized solution branch
T
ω
. Then we find a sequence of local bifurcations with respect to
T
ω
, and we find global bifurcation branches of partially synchronized solutions. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-015-0498-x |