Layered Patterns in Reaction–Diffusion Models with Perona–Malik Diffusions

In this paper we deal with a reaction–diffusion equation in a bounded interval of the real line with a nonlinear diffusion of Perona–Malik’s type and a balanced bistable reaction term. Under very general assumptions, we study the persistence of layered solutions, showing that it strongly depends on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Milan journal of mathematics 2024-06, Vol.92 (1), p.195-234
Hauptverfasser: De Luca, Alessandra, Folino, Raffaele, Strani, Marta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we deal with a reaction–diffusion equation in a bounded interval of the real line with a nonlinear diffusion of Perona–Malik’s type and a balanced bistable reaction term. Under very general assumptions, we study the persistence of layered solutions, showing that it strongly depends on the behavior of the reaction term close to the stable equilibria ± 1 , described by a parameter θ > 1 . If θ ∈ ( 1 , 2 ) , we prove existence of steady states oscillating (and touching) ± 1 , called compactons , while in the case θ = 2 we prove the presence of metastable solutions , namely solutions with a transition layer structure which is maintained for an exponentially long time. Finally, for θ > 2 , solutions with an unstable transition layer structure persist only for an algebraically long time.
ISSN:1424-9286
1424-9294
DOI:10.1007/s00032-024-00398-5