A Type of Brézis–Oswald Problem to the Φ- Laplacian Operator with Very Singular Term
In this work we consider existence and uniqueness of solutions for a quasilinear elliptic problem, which may be singular at the origin. Furthermore, we consider a comparison principle for subsolutions and supersolutions just in W loc 1 , Φ ( Ω ) to the problem - Δ Φ u = f ( x , u ) in Ω , u > 0 i...
Gespeichert in:
Veröffentlicht in: | Milan journal of mathematics 2018-06, Vol.86 (1), p.53-80 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we consider existence and uniqueness of solutions for a quasilinear elliptic problem, which may be singular at the origin. Furthermore, we consider a comparison principle for subsolutions and supersolutions just in
W
loc
1
,
Φ
(
Ω
)
to the problem
-
Δ
Φ
u
=
f
(
x
,
u
)
in
Ω
,
u
>
0
in
Ω
,
u
=
0
on
∂
Ω
,
where f has
Φ
-sublinear growth. In our main results the function
f
(
x
,
u
) may be singular at
u
= 0 and the nonlinear term
f
(
x
,
t
)
/
t
ℓ
-
1
,
t
>
0
is strictly decreasing for a suitable
ℓ
>
1
. Under different kind of boundary conditions we prove an improvement for the classical Brézis-Oswald and Díaz-Sáa’s results in Orlicz- Sobolev framework for singular nonlinearities as well. Some results discussed here are news even for Laplacian or
p
-Laplacian operators. |
---|---|
ISSN: | 1424-9286 1424-9294 |
DOI: | 10.1007/s00032-018-0279-z |