A Type of Brézis–Oswald Problem to the Φ- Laplacian Operator with Very Singular Term

In this work we consider existence and uniqueness of solutions for a quasilinear elliptic problem, which may be singular at the origin. Furthermore, we consider a comparison principle for subsolutions and supersolutions just in W loc 1 , Φ ( Ω ) to the problem - Δ Φ u = f ( x , u ) in Ω , u > 0 i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Milan journal of mathematics 2018-06, Vol.86 (1), p.53-80
Hauptverfasser: Carvalho, M.L., Goncalves, J.V., Silva, E.D., Santos, C.A.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we consider existence and uniqueness of solutions for a quasilinear elliptic problem, which may be singular at the origin. Furthermore, we consider a comparison principle for subsolutions and supersolutions just in W loc 1 , Φ ( Ω ) to the problem - Δ Φ u = f ( x , u ) in Ω , u > 0 in Ω , u = 0 on ∂ Ω , where f has Φ -sublinear growth. In our main results the function f ( x , u ) may be singular at u =  0 and the nonlinear term f ( x , t ) / t ℓ - 1 , t > 0 is strictly decreasing for a suitable ℓ > 1 . Under different kind of boundary conditions we prove an improvement for the classical Brézis-Oswald and Díaz-Sáa’s results in Orlicz- Sobolev framework for singular nonlinearities as well. Some results discussed here are news even for Laplacian or p -Laplacian operators.
ISSN:1424-9286
1424-9294
DOI:10.1007/s00032-018-0279-z