ENDOMORPHISMS OF VERMA MODULES FOR RATIONAL CHEREDNIK ALGEBRAS
We study the endomorphism algebras of Verma modules for rational Cherednik algebras at t = 0. It is shown that, in many cases, these endomorphism algebras are quotients of the centre of the rational Cherednik algebra. Geometrically, they define Lagrangian subvarieties of the generalized Calogero–Mos...
Gespeichert in:
Veröffentlicht in: | Transformation groups 2014-09, Vol.19 (3), p.699-720 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the endomorphism algebras of Verma modules for rational Cherednik algebras at
t
= 0. It is shown that, in many cases, these endomorphism algebras are quotients of the centre of the rational Cherednik algebra. Geometrically, they define Lagrangian subvarieties of the generalized Calogero–Moser space. In the introduction, we motivate our results by describing them in the context of derived intersections of Lagrangians. |
---|---|
ISSN: | 1083-4362 1531-586X |
DOI: | 10.1007/s00031-014-9281-x |