BASES NORMALES AUTODUALES ET GROUPES UNITAIRES EN CARACT ÉRISTIQUE 2
Let k be a field of characteristic 2, and let L/k be a finite Galois extension, with Galois group G. We show the equivalence of the following two properties: (∗) The group G is generated by elements of order 2 and by elements of odd order. (∗∗) There exists x ∈ L such that Tr(x) = 1 and Tr(x.g(x)) =...
Gespeichert in:
Veröffentlicht in: | Transformation groups 2014, Vol.19 (2), p.643-698 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let k be a field of characteristic 2, and let L/k be a finite Galois extension, with Galois group G. We show the equivalence of the following two properties:
(∗) The group G is generated by elements of order 2 and by elements of odd order.
(∗∗) There exists x ∈ L such that Tr(x) = 1 and Tr(x.g(x)) = 0 for every g ∈ G, g = 1. |
---|---|
ISSN: | 1083-4362 1531-586X |
DOI: | 10.1007/s00031-014-9269-6 |