BASES NORMALES AUTODUALES ET GROUPES UNITAIRES EN CARACT ÉRISTIQUE 2

Let k be a field of characteristic 2, and let L/k be a finite Galois extension, with Galois group G. We show the equivalence of the following two properties: (∗) The group G is generated by elements of order 2 and by elements of odd order. (∗∗) There exists x ∈ L such that Tr(x) = 1 and Tr(x.g(x)) =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2014, Vol.19 (2), p.643-698
1. Verfasser: SERRE, JEAN-PIERRE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k be a field of characteristic 2, and let L/k be a finite Galois extension, with Galois group G. We show the equivalence of the following two properties: (∗) The group G is generated by elements of order 2 and by elements of odd order. (∗∗) There exists x ∈ L such that Tr(x) = 1 and Tr(x.g(x)) = 0 for every g ∈ G, g = 1.
ISSN:1083-4362
1531-586X
DOI:10.1007/s00031-014-9269-6