Cyclic elements in semisimple lie algebras
We develop a theory of cyclic elements in semisimple Lie algebras. This notion was introduced by Kostant, who associated a cyclic element with the principal nilpotent and proved that it is regular semisimple. In particular, we classfiy all nilpotents giving rise to semisimple and regular semisimple...
Gespeichert in:
Veröffentlicht in: | Transformation groups 2013-03, Vol.18 (1), p.97-130 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a theory of cyclic elements in semisimple Lie algebras. This notion was introduced by Kostant, who associated a cyclic element with the principal nilpotent and proved that it is regular semisimple. In particular, we classfiy all nilpotents giving rise to semisimple and regular semisimple cyclic elements. As an application, we obtain an explicit construction of all regular elements in Weyl groups. |
---|---|
ISSN: | 1083-4362 1531-586X |
DOI: | 10.1007/s00031-013-9214-0 |