Doubling the equatorial for the prescribed scalar curvature problem on $${{\mathbb {S}}}^N
We consider the prescribed scalar curvature problem on $$ {{\mathbb {S}}}^N $$ S N $$\begin{aligned} \Delta _{{{\mathbb {S}}}^N} v-\frac{N(N-2)}{2} v+{\tilde{K}}(y) v^{\frac{N+2}{N-2}}=0 \quad \text{ on } \ {{\mathbb {S}}}^N, \qquad v >0 \quad {\quad \hbox {in } }{{\mathbb {S}}}^N, \end{aligned}$...
Gespeichert in:
Veröffentlicht in: | Nonlinear differential equations and applications 2023-05, Vol.30 (3), Article 40 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the prescribed scalar curvature problem on
$$ {{\mathbb {S}}}^N $$
S
N
$$\begin{aligned} \Delta _{{{\mathbb {S}}}^N} v-\frac{N(N-2)}{2} v+{\tilde{K}}(y) v^{\frac{N+2}{N-2}}=0 \quad \text{ on } \ {{\mathbb {S}}}^N, \qquad v >0 \quad {\quad \hbox {in } }{{\mathbb {S}}}^N, \end{aligned}$$
Δ
S
N
v
-
N
(
N
-
2
)
2
v
+
K
~
(
y
)
v
N
+
2
N
-
2
=
0
on
S
N
,
v
>
0
in
S
N
,
under the assumptions that the scalar curvature
$${\tilde{K}}$$
K
~
is rotationally symmetric, and has a positive local maximum point between the poles. We prove the existence of infinitely many non-radial positive solutions, whose energy can be made arbitrarily large. These solutions are invariant under some non-trivial sub-group of
O
(3) obtained doubling the equatorial. We use the finite dimensional Lyapunov–Schmidt reduction method. |
---|---|
ISSN: | 1021-9722 1420-9004 |
DOI: | 10.1007/s00030-023-00845-z |