Global existence and uniqueness for the inhomogeneous 1-Laplace evolution equation

In this paper we introduce a new approach to the Dirichlet problem for the total variation flow in a bounded domain and analyze the associated inhomogeneous problem. We prove global existence and uniqueness for source data belonging to L l o c 1 ( 0 , + ∞ ; L 2 ( Ω ) ) and L 2 -initial data. We comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear differential equations and applications 2015-10, Vol.22 (5), p.1213-1246
Hauptverfasser: Segura de León, Sergio, Webler, Claudete M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce a new approach to the Dirichlet problem for the total variation flow in a bounded domain and analyze the associated inhomogeneous problem. We prove global existence and uniqueness for source data belonging to L l o c 1 ( 0 , + ∞ ; L 2 ( Ω ) ) and L 2 -initial data. We compare solutions corresponding to different data as well as study the long-term behaviour of the solutions. We also show explicit examples of radial solutions.
ISSN:1021-9722
1420-9004
DOI:10.1007/s00030-015-0320-7