Global existence and uniqueness for the inhomogeneous 1-Laplace evolution equation
In this paper we introduce a new approach to the Dirichlet problem for the total variation flow in a bounded domain and analyze the associated inhomogeneous problem. We prove global existence and uniqueness for source data belonging to L l o c 1 ( 0 , + ∞ ; L 2 ( Ω ) ) and L 2 -initial data. We comp...
Gespeichert in:
Veröffentlicht in: | Nonlinear differential equations and applications 2015-10, Vol.22 (5), p.1213-1246 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce a new approach to the Dirichlet problem for the total variation flow in a bounded domain and analyze the associated inhomogeneous problem. We prove global existence and uniqueness for source data belonging to
L
l
o
c
1
(
0
,
+
∞
;
L
2
(
Ω
)
)
and
L
2
-initial data. We compare solutions corresponding to different data as well as study the long-term behaviour of the solutions. We also show explicit examples of radial solutions. |
---|---|
ISSN: | 1021-9722 1420-9004 |
DOI: | 10.1007/s00030-015-0320-7 |