The role of the mean curvature in a Hardy–Sobolev trace inequality
The Hardy–Sobolev trace inequality can be obtained via harmonic extensions on the half-space of the Stein and Weiss weighted Hardy–Littlewood–Sobolev inequality. In this paper we consider a bounded domain and study the influence of the boundary mean curvature in the Hardy–Sobolev trace inequality on...
Gespeichert in:
Veröffentlicht in: | Nonlinear differential equations and applications 2015-10, Vol.22 (5), p.1047-1066 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Hardy–Sobolev trace inequality can be obtained via harmonic extensions on the half-space of the Stein and Weiss weighted Hardy–Littlewood–Sobolev inequality. In this paper we consider a bounded domain and study the influence of the boundary mean curvature in the Hardy–Sobolev trace inequality on the underlying domain. We prove existence of minimizers when the mean curvature is negative at the singular point of the Hardy potential. |
---|---|
ISSN: | 1021-9722 1420-9004 |
DOI: | 10.1007/s00030-015-0313-6 |