On $$\mathsf {G} $$-isoshtukas over function fields
In this paper we classify isogeny classes of global $$\mathsf {G} $$ G -shtukas over a smooth projective curve $$C/{\mathbb {F}}_q$$ C / F q (or equivalently $$\sigma $$ σ -conjugacy classes in $$\mathsf {G} (\mathsf {F} \otimes _{{\mathbb {F}}_q} \overline{{\mathbb {F}}_q})$$ G ( F ⊗ F q F q ¯ ) wh...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2021-09, Vol.27 (4), Article 75 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we classify isogeny classes of global
$$\mathsf {G} $$
G
-shtukas over a smooth projective curve
$$C/{\mathbb {F}}_q$$
C
/
F
q
(or equivalently
$$\sigma $$
σ
-conjugacy classes in
$$\mathsf {G} (\mathsf {F} \otimes _{{\mathbb {F}}_q} \overline{{\mathbb {F}}_q})$$
G
(
F
⊗
F
q
F
q
¯
)
where
$$\mathsf {F} $$
F
is the field of rational functions of
C
) by two invariants
$${\bar{\kappa }},{\bar{\nu }}$$
κ
¯
,
ν
¯
extending previous works of Kottwitz. This result can be applied to study points of moduli spaces of
$$\mathsf {G} $$
G
-shtukas and thus is helpful to calculate their cohomology. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-021-00683-w |