On $$\mathsf {G} $$-isoshtukas over function fields

In this paper we classify isogeny classes of global $$\mathsf {G} $$ G -shtukas over a smooth projective curve $$C/{\mathbb {F}}_q$$ C / F q (or equivalently $$\sigma $$ σ -conjugacy classes in $$\mathsf {G} (\mathsf {F} \otimes _{{\mathbb {F}}_q} \overline{{\mathbb {F}}_q})$$ G ( F ⊗ F q F q ¯ ) wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2021-09, Vol.27 (4), Article 75
Hauptverfasser: Hamacher, Paul, Kim, Wansu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we classify isogeny classes of global $$\mathsf {G} $$ G -shtukas over a smooth projective curve $$C/{\mathbb {F}}_q$$ C / F q (or equivalently $$\sigma $$ σ -conjugacy classes in $$\mathsf {G} (\mathsf {F} \otimes _{{\mathbb {F}}_q} \overline{{\mathbb {F}}_q})$$ G ( F ⊗ F q F q ¯ ) where $$\mathsf {F} $$ F is the field of rational functions of C ) by two invariants $${\bar{\kappa }},{\bar{\nu }}$$ κ ¯ , ν ¯ extending previous works of Kottwitz. This result can be applied to study points of moduli spaces of $$\mathsf {G} $$ G -shtukas and thus is helpful to calculate their cohomology.
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-021-00683-w