On the derived category of the Hilbert scheme of points on an Enriques surface

We use semi-orthogonal decompositions to construct autoequivalences of Hilbert schemes of points on Enriques surfaces and of Calabi–Yau varieties which cover them. While doing this, we show that the derived category of a surface whose irregularity and geometric genus vanish embeds into the derived c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2015-10, Vol.21 (4), p.1339-1360
Hauptverfasser: Krug, Andreas, Sosna, Pawel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use semi-orthogonal decompositions to construct autoequivalences of Hilbert schemes of points on Enriques surfaces and of Calabi–Yau varieties which cover them. While doing this, we show that the derived category of a surface whose irregularity and geometric genus vanish embeds into the derived category of its Hilbert scheme of points.
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-015-0178-x